
Software Heritage and IPOL,
a fruitful collaboration towards reproducible 

research
Miguel Colom

miguel.colom-barco at ens-paris-saclay d0t fr



The origin of the IPOL journal

● Started in October 2009
● The initiative of the Image Processing Group at CMLA (now Centre Borelli) 

at ENS-Cachan (now ENS Paris-Saclay)
● First article published in 2010



IPOL's motivation

● The reproducibility crisis pointed out by Donoho et al
● Wanted to reveal the real state of the art in image processing
● Deeply understanding the methods. All the mathematical details
● Reproducible research :)



How was it designed

● Publication = article + source code + data as a whole
○ no longer a PDF + supplementary material (code, data)

● Let everybody test the algorithms
○ Scientific community, students, industry, …
○ With the own data

● Make it straightforward to use it:
○ Online demos



Structure of a publication

● The PDF of the article
● The peer-reviewed source code, under a FOSS license
● Any associated data

● An online demo (supplementary material)
○ An archive of experiments



Let's take a look

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=201&key=E
D5EFD91CC1FF7A8A9B4F7305C901F48

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=201&key=ED5EFD91CC1FF7A8A9B4F7305C901F48
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=201&key=ED5EFD91CC1FF7A8A9B4F7305C901F48


Particularities in the editorial process (1 / 2)

● Not easy to find reviewers both experts in the scientific field and the 
implementation details (code)
○ Our solution: always consider two reviewers
○ One more focused on the scientific aspects of the article and the other on the 

code

○ → Can we really separate those two aspects?
■ NO. They need to work together. We can't simply split the tasks. Both the 

article and the code are part of the same publication.



Particularities in the editorial process (2 / 2)

● The editors work with the authors to improve their code until it's published
● We need permanent identifiers and pointers to the code during the 

review process
● Also after publication:

○ The sources need to be preserved. Permanent storage
○ The identifiers needs to follow a standard. FAIR data
○ One should be able to cite the whole or pieces of the source code
○ The sources need to be referenced, with different granularity levels



General difficulties related to Reproducible Research

● The source code in the author's website could disappear
○ For example, a researcher moves to another university

● The project in Github could be made private
● Github could close! (See the precedent of Google Code)
● The author could alter the history and the commit's tree

○ Several tools available: BFG Repo-Cleaner, git filter-repo, …
● What about a DOI? Same problem: the pointed object can be altered. 

Integrity not ensured. Responsibility on publisher's side
● Each forge might provide their own non-standard formats for referencing 

the code
○ Probably not the adequate granularity

● Not an standard way to cite software
○ HAL, IPOL, and others the include the SWHID though



Quick note: intrinsic identifiers

● Some identifiers are "extrinsic":
○ Not computed from the object itself
○ For example: the DOI

● Intrinsic identifiers are also based on the contents of the object
○ For example: the SHA-1 sum of a file



So… what do we need?

● A repository of all source code, with perpetual archiving
● A dynamic archive

○ If a new commits arrive, we want then in the stored copy
● Traceability and complete metadata
● Identifiers at different granularity levels

○ Intrinsic
○ Be able to cite the sources in a standard way

■ In France: good solution with HAL + Software Heritage for citation of code
● Findable: from the identifier we should arrive to the archive itself
● Accessible data: no registration, paywalls, …
● Interoperable: an open specification of the identifiers
● Reusable: identifiers and formats we can apply in other contexts 



So… any good solution around?

● Yes!
● Software Heritage provides all we need to evaluate and publish 

reproducible research and conduct open science
○ Permanent storage
○ Intrinsic identifiers (SWHID)

■ Granularity: snapshot, release, revision, directory, file, line, …
○ Open standard: SWHID standardization in progress…
○ Possibility to properly incorporate it within software citations 
○ No cost for authors or institutions to use the platform







How does it work? Merkle tree





IPOL's workflow

1. The author develops and versions with git with Gitlab, Github, or any other 
collaborative platform

2. When the code is submitted, the editors take note of the submitted 
revision (commit ID)

3. IPOL might create a public git repository for the code if not available (the 
authors might submit a ZIP file, for example)

4. The authors can continue developing, but IPOL freezes at that particular 
submitted revision

5. In case of changes (typically bug fixes), the editors can merge after 
reviewing and update the version under review

6. When the publication is accepted, it's submitted to Software Heritage for 
archival



IPOL's code publication

● When the code is accepted, it's submitted to Software Heritage for 
archival
○ At this moment: manual process by the copyeditor

→ We're working on improving (automating) this…



IPOL's code publication: ideas for the short term

● Automatic deploy to Software Heritage. Not only after publication, but also 
during the review process

● Use of SWHIDs in the review process, whenever they're available
● Automatic download of the sources from a revision of the git repository. 

No more (controlled) packages from a particular revision
● By default prefer the copy of the sources in Software Heritage instead of 

the local copy, whenever it's possible
● Allow for integrity checks. For example, given a file we could compute its 

hash, compare to an IPOL's database of published codes, find it, and obtain 
its SWHID along with all the metadata. Traceability.

● In short, we need to use and develop new tools to ensure: findability, 
availability, integrity, traceability, and better reproducibility .



Conclusion

● The objective of IPOL is communicating reproducible research on 
algorithms, with detailed mathematical descriptions and providing the 
source code under a FOSS license. Open science.

● The inclusion of Software as part of the publication is not trivial
● More complex review process
● Needs to reference properly the sources during the review process and after 

publication.
● Needs permanent archival

● Software Heritage has proved to be an excellent ally for IPOL, since it 
provides a complete solution and infrastructure
● This was expected: software is not supplementary material, but a main 

research artifact. Reproducible research needs to that Software is properly 
referenced, archived, and cited. Software Heritage fully covered this need.



Thank you for your attention!


