LA
e\
</> <
L\”QD . CENTRE
Y, BORELLI

Software Heritage and IPOL,
a fruitful collaboration towards reproducible
research

Miguel Colom
miguel.colom-barco at ens-paris-saclay dOt fr

The origin of the IPOL journal

e Started in October 2009

e The initiative of the Image Processing Group at CMLA (now Centre Borelli)
at ENS-Cachan (now ENS Paris-Saclay)

e First article published in 2010

IPOL's motivation

The reproducibility crisis pointed out by Donoho et al

Wanted to reveal the real state of the art in image processing
Deeply understanding the methods. All the mathematical details
Reproducible research :)

How
was it designed

o
PUbI
icatio
n=

no lo articl

nger a PDF fs+ source cod

u
pplementary mea:- data as a
erial (c whol
1) ata

O

| et ev
erybo
Scientifig){::}est the algori
mmunity, StuI:]tehms

nts. ind

@)
)

Make i
it strai
traightforward t

O

W.
ith the own dat
a

Onli
lined
nos

o

X QW
g powet K 2 O
* on SE T
m\ sesins | the \\\\pn q‘\\u\.\n
of o b y.‘- e AR
" e o Fechnolo® - 2060 -m\.
-,\\wmAz\m;n \z\\\nu.w,\ ar W An -D,‘) Ll
e s BT \Dela % o™ o ,,rm\ -
]"l cees™ 2! £}
wall M 0N © e 50O S s ad \\dr\\'r\v/\',\l\. 0. Y T e \\«\m«m ent?
s (x\\hu\m‘f analyS® Yourns of e e “r“(hu g 9 e A M o T
prmat Scienee 2 s T nolosy 3 1055 1065 a1, Bar Y 2 s G 5 adey. esent Vi e \\m
3 K(l\‘)1\\m).n\o(d.\u o o counts 3% \n\\\u\\g! oo (mm “.Mbh“p 2 \hm_““s F—y . m“ "1
& Wb of ¥ P e v e e, yourn2) of e o o D s, Sy
ety €7 o Tecndd o2 Partan) 200 ‘z\m\ e o A ooty ©
Thawad M 09 Goo! L Cinanon ® analy’ o (mmw ot zﬁ
R Jour can SO for \.(m.mm.“ i RS oo
4 Fecmdosy oo 1537 e i
armad S Cant V- (@06 \, m_w, s predt qors © 2t o
“-\'-“\m\ s o ‘m \nh\mnum \nmxr
ogy 51 v.\» 072 i
5) \m_m\»s\ nloads 3% T e bt
i O e \,.wmm. §
56 \\\“‘ \ 007
T iders T rom v e ¥
\u-\n\,
S ..u-.,c._ (&“\\\\w\w‘\m; 5, P b
oy R Heh, © e Mn ,m.l\
ferenee® 37 S
v(k \r\nt
ess
" \'\nS&
a8 R ands
Paxabor®) r;m\n\u\ﬁ‘u & schent ?m\r(dmp'
ion- 1%, nu\w\\\l'-m\\c((ooty \\«‘m.‘(o Hl“\\\\'sm
s P a" gy 441 o
F-“'m \L“\IV § o ME N ;\ e, AR \m\‘
e AR N““‘ '2‘“‘ "‘»‘ s /e mm\ A z\nwu;m
K, Hot i, Roos \x z\nm e
T L® oy W (\)\\\ qfnn.m i
1‘“‘ S I\m\vﬂ s 3 560-
N “'a\\l\mn\.. 3o \l(l \\y\‘\\ Ho vec! o L\l\m\.«»
»\n.m.m A mm\._mum w\- u\:\m A
-z\\\n\\rl
s 1o b
s

Structure of a publication

e The PDF of the article
e The peer-reviewed source code, under a FOSS license
e Any associated data

e An online demo (supplementary material)
o An archive of experiments

Let's take a look

https://ipolcore.ipol.im/demo/clientApp/demo.htmi?id=201&key=E
DSEFD91CC1FF7A8A9B4F7305C901F438

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=201&key=ED5EFD91CC1FF7A8A9B4F7305C901F48
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=201&key=ED5EFD91CC1FF7A8A9B4F7305C901F48

Particularities in the editorial process (1 / 2)

e Not easy to find reviewers both experts in the scientific field and the

implementation details (code)
o Our solution: always consider two reviewers
o One more focused on the scientific aspects of the article and the other on the
code

o — Can we really separate those two aspects?
m NO. They need to work together. We can't simply split the tasks. Both the
article and the code are part of the same publication.

Particularities in the editorial process (2 / 2)

e The editors work with the authors to improve their code until it's published

e \We need permanent identifiers and pointers to the code during the
review process

e Also after publication:

O

©)
©)
©)

The sources need to be preserved. Permanent storage

The identifiers needs to follow a standard. FAIR data

One should be able to cite the whole or pieces of the source code
The sources need to be referenced, with different granularity levels

General difficulties related to Reproducible Research

e The source code in the author's website could disappear
o For example, a researcher moves to another university

e The project in Github could be made private

e Github could close! (See the precedent of Google Code)

e The author could alter the history and the commit's tree
o Several tools available: BFG Repo-Cleaner, git filter-repo, ...
e \What about a DOI? Same problem: the pointed object can be altered.
Integrity not ensured. Responsibility on publisher's side
e Each forge might provide their own non-standard formats for referencing
the code
o Probably not the adequate granularity
e Not an standard way to cite software
o HAL, IPOL, and others the include the SWHID though

Quick note: intrinsic identifiers

e Some identifiers are "extrinsic":
o Not computed from the object itself
o For example: the DOI

e Intrinsic identifiers are also based on the contents of the object
o For example: the SHA-1 sum of a file

So

... what do we need?

A repository of all source code, with perpetual archiving
A dynamic archive

o If a new commits arrive, we want then in the stored copy
Traceability and complete metadata

Identifiers at different granularity levels
o Intrinsic
o Be able to cite the sources in a standard way
m In France: good solution with HAL + Software Heritage for citation of code

Findable: from the identifier we should arrive to the archive itself
Accessible data: no registration, paywalls, ...
Interoperable: an open specification of the identifiers

eusable: identifiers and formats we can apply in other contexts

So... any good solution around?

Yes!

Software Heritage provides all we need to evaluate and publish

reproducible research and conduct open science

©)
©)

Permanent storage
Intrinsic identifiers (SWHID)

m Granularity: snapshot, release, revision, directory, file, line, ...
Open standard: SWHID standardization in progress...
Possibility to properly incorporate it within software citations
No cost for authors or institutions to use the platform

A
v,V
<z 3>
NAA

Regular crawling

W Bitbucket

2,539,527 origins

R

26,984 origins

GitHub

205,730,285 origins

+++ O1
3,267 origins

- -
V Guix
50,149 origins
o
;¢ launch

512,270 origins

npm

3,595,535 origins

fedora

< PAGURE

67,596 origins

python
A ’ o

524,009 origins

These software origins get continuously discovered and archived using the listers implemented by Software Heritage.

56,983 origins

(©debian

136,866 origins
gitiles
10,232 origins

(A Gogs

197 origins

354 origins

Maven

312,428 origins

@

5,098 origins

@ Phabricator

201 origins

<& SOURCEFORGE

381,373 origins

Discontinued hosting

Discontinued hosting services. Those origins have been archived by Software Heritage.

"a GITORIOUS Google code ﬁ

122,014 origins < 790,026 origins <
On demand archival

These origins are directly pushed into the archive by trusted partners using the deposit service of Software Heritage.

i elLife N

git

30,314 origins

@

54,628 origins

& GitLab

4,245,668 origins

1,076,337 origins

e heptapod

1,232 origins

24 Nix0S

48,590 origins

@ Packagist
S e g
Tl

305,886 origins

@ pub.dev

50,994 origins

stagit

318 origins

o Bitbucket

336,795 origins

.! IPOL Journal

Structure of a SWHID identifier

schema version object_id

I
swh :%1ddb23118f92d7218099a5373990cf58f1d07fa }

y v

prefix object_type

origin_ctxt ;origin=https://github.com/chrislgarry/Apollo-11]
—/ “snp” - snapshot
% visit_ctxt ;visit=swh:1l:snp:206c27c0c031lcbaacéb5fedddba8fe082dea9836]
frelf —release
it : anchor_ctxt ;anchor=swh:1:rev:3913£198£4383d4d638c0485d6aa%02££2£35828]
/8N rev” - revision =
[:] "dir” - directory path_ctxt ;path=/Luminary099/BURN_BABY_BURN—-MASTER_IGNITION_ROUTINE.agc}

~ent” - content . .
lines_ctxt ;lines=64-72]

Masasat s es J

Current status

30+B SWHIDs in the Software Heritage archive
Mention in Linux Foundation’s SPDX 2.2; IANA registered; WikiData P6138

How does it work? Merkle tree

0
) (LR) ow m) S3U2U0)

p @ . 4 .“......... bo
i

v‘”‘”ﬁ.::

A§A‘A‘A G
mco_m_?”.en_A]
- <
X <{ sases|ay £

sjoysdeus

€ > C |25 ipolim/pub/art/2021/391/

j IPOL Journal - Image Processing On Line

HOME - ABOUT - ARTICLES - PREPRINTS - WORKSHOPS - NEWS - SEARCH

Center/Surround Retinex: Analysis and Implementation
Jose-Luis Lisani, Ana-Belén Petro, Catalina Sbhert

|article | [demol| [archive |

published + 2021-12-19
reference -+ Jose-Luis Lisani, ANA-BELEN PETRO, AND CATALINA SBERT, Center/Surround Retinex: Analysis and Implementation, Image Processing
On Line, 11 (2021), pp. 434-450. https://doi.org/10.5201/ipol.2021.391

BibTeX info)

Communicated by Jean-Michel Morel
Demo edited by Jose-Luis Lisani

Abstract

The Retinex perception theory tries to mimic the human ability to cope with the high dynamic range of natural scenes. In 1986 E. Land proposed
a formulation of this model in terms of a Center/Surround operation involving two steps, a local adaptation and a global transform. This model
gave rise to the so-called Center/Surround tone-mapping algorithms. In this paper we unify the different Center/Surround algorithms proposed in
the literature using a common framework and analyze several possibilities for the local and global operations involved.

Download

o full text manuscript: /- PDF low-res. (576.4kB))~ PDF (47.2MB) [*)

e source code: (]| TAR/GZ

< /> Software Heritage Archive

@softwareversion{sw-ipol.2021.391,
title = {{Center/Surround Retinex: Analysis and Implementation}},

author = {Jose-Luis Lisani, Catalina Sbhert},

date = {2021-01-01},

license = {AGPL-3.0-or-later},

version = {1.6},

swhid = v

{swh:1:dir:cd0313501fd340ef86219e2e52f6c8b202234d8e;0origin=https://doi.org/10.5201/ipol.2021.391;vis ,

Copy to clipboard

IPOL's workflow

1. The author develops and versions with git with Gitlab, Github, or any other
collaborative platform

2. When the code is submitted, the editors take note of the submitted
revision (commit ID)

3. IPOL might create a public git repository for the code if not available (the
authors might submit a ZIP file, for example)

4. The authors can continue developing, but IPOL freezes at that particular
submitted revision

5. In case of changes (typically bug fixes), the editors can merge after
reviewing and update the version under review

6. When the publication is accepted, it's submitted to Software Heritage for
archival

IPOL's code publication

e When the code is accepted, it's submitted to Software Heritage for

archival
o At this moment: manual process by the copyeditor

— We're working on improving (automating) this...

IPOL's code publication: ideas for the short term

e Automatic deploy to Software Heritage. Not only after publication, but also
during the review process

e Use of SWHIDs in the review process, whenever they're available

e Automatic download of the sources from a revision of the git repository.
No more (controlled) packages from a particular revision

e By default prefer the copy of the sources in Software Heritage instead of
the local copy, whenever it's possible

e Allow for integrity checks. For example, given a file we could compute its
hash, compare to an IPOL's database of published codes, find it, and obtain
its SWHID along with all the metadata. Traceability.

e In short, we need to use and develop new tools to ensure: findability,
availability, integrity, traceability, and better reproducibility .

Conclusion

e The objective of IPOL is communicating reproducible research on
algorithms, with detailed mathematical descriptions and providing the
source code under a FOSS license. Open science.

e The inclusion of Software as part of the publication is not trivial

e More complex review process

e Needs to reference properly the sources during the review process and after
publication.

e Needs permanent archival

e Software Heritage has proved to be an excellent ally for IPOL, since it

provides a complete solution and infrastructure
e This was expected: software is not supplementary material, but a main
research artifact. Reproducible research needs to that Software is properly
referenced, archived, and cited. Software Heritage fully covered this need.

I»\ﬂ
<[>
v

-

CENTRE
BORELLI

N

v
<\
<[>
\7A

Thank you for your attention!

